

مجلة ليبيا للدراسات الجغرافية

مجلةعلمية محكمة نصف سنوية تصدر عن الجمعية الجغرافية الليبية – فرع المنطقة الوسطى

العدد الثالث يوليو 2022 م

رئيس التحرير أ.د. حسين مسعود أبومدينت

أعضاء هيئة التحرير

د.عمر امحمد عنيبه

أ. د. عبدالسلام أحمد الحاج

د. محمود أحمد زاقوب

د. سـليمان يحيى السبيعي

المراجعة اللغوية

د. فوزية أحمد عبدالحفيظ الواسع

مراجعة ملخصات اللغة الانجليزية السيدة/ سماح حسن الزناتي مجلى ليبيا للدراسات الجغرافيي مجلة علمية محكمة نصف سنوية تصدر عن الجمعية الجغرافية الليبية – فرع المنطقة الوسطى. العدد الثالث: يوليو 2022م

العنوان: الجمعية الجغرافية الليبية / فرع المنطقة الوسطى مدينة سرت -ليبيا الموقع الالكتروني للمجلة: <u>www.lfgs.ly</u> البريد الالكتروني: Email: <u>editor@lfgs.ly</u> لارسال المحوث : Email: research@lfgs.ly

لإرسال البحوت : <u>Tescarch(@ngs.ry</u> المال

حقوق الطبع والنشر محفوظة لمجلة ليبيا للدراسات الجغرافية

جميع البحوث والآراء التي تنشر في المجلة لا تعبر إلا عن وجهة نظر

أصحابها، ولا تعكس بالضرورة رأي هيئة تحرير المجلة.

أعضاء الهيئة الإستشارية للمجلة:

جامعة بنغازي	أ. د. منصور محمد الكيخيا
جامعة طرابلس	أ. د. مفتاح علي دخيل
جامعة بنغازي	أ. د. سعد خليل القزيري
جامعة بنغازي	أ. د. محمود عبدالله نجم
جامعة بنغازي	أ. د. عوض يوسف الحداد
جامعة طرابلس	أ. د. ابوالقاسم محمد العزابي
جامعة بنغازي	أ. د. منصور محمد البابور
جامعة بنغازي	أ. د. عبدالحميد صالح بن خيال
جامعة طرابلس	أ.د.امحمد عياد امقيلي
جامعة طرابلس	أ. د. سميرة محمد العياطي
جامعة طرابلس	أ. د. ناجي عبدالله الزناتي
جامعة سبها	أ. د. علي محمد محمد صالح
جامعة طبرق	د. عبدالصادق حمد صويدق
جامعة طرابلس	د. خالد محمد غومة
جامعة الزاوية	د. مفيدة أبوعجيلة بلق
الارصاد الجوية	د.بشير عبدالله بشير
جامعة بني وليد	د. عبدالقادر علي الغول
جامعة مصراتة	د.علي مصطفى سليم
جامعة عمر المختار	د. جمال سالم النعاس
جامعة الزاوية	د. آمال جمعة النكب
جامعة المرقب	د. رجب فرج اقنيبر
الجامعة الأسمرية	د. علي عطية أبوحمرة

واخ ت رَ مَرْهُوْ ار والفلك الَّتي تَحري فيَ الْبحر ېک ماء من مَّاء فأ ل الله من السّ حيا به الأرض بعد موتما َدابَّة کل والسحا ماء والأَرضُ لآيات لقوم يعقلُون) بين

[سورة البقرة أية 163]

شروط النشر بالمجلة

- تقبل المجلة البحوث بإحدى اللغتين العربية أو الإنجليزية.
 - تنشر المجلة البحوث العلمية الأصيلة والمبتكرة .
- _ إقرار من الباحث بأن بحثه لم سبق نشره أو الدفع به لأية مطبوعة أخرى أو مؤتمر علمي.
 وأنه غير مستل من رسالة علمية (ماجستير أو دكتوراه) قام بإعدادها الباحث، وأن يتعهد
 الباحث بعدم إرسال بحثة إلى أية جهة أخرى.
- تقدم البحوث عن طريق البريد الالكتروني للمحلة **Research@LFGS.LY** على أن يلتزم الباحث بالضوابط الآتية:
- 1. يقدم البحث مطبوع الكترونيا بصيغة (Word) على ورق حجم (A4) وتكون هوامش الصفحة (3 سم) لجميع الاتجاهات.
- 2. تكتب البحوث العربية بخط (Traditional Arabic)، وبحجم (14) وتكون المسافة بين السطور (1)، وتكتب العناوين الرئيسية والفرعية بنفس الخط وبحجم (16) وبشكل غامق (Bold). أما البحوث المكتوبة باللغة الانجليزية فتكون المسافة بين السطور (1)، بخط (Time New Roman) وبحجم (12)، وتكتب العناوين الرئيسية والفرعية بنفس الخط وبحجم (14) مع (Bold).
- يكتب عنوان البحث كاملا واسم الباحث (الباحثين)، وجهة عمله، وعنوانه الالكتروني في الصفحة الأولى من البحث.
- 4. يرفق مع البحث ملخصان، باللغتين العربية والإنجليزية، بما لا يزيد على 300 كلمة لكل منهما، وأن يتبع كل ملخص كلمات مفتاحية لا تزيد عن ست كلمات.
 - .5 يترك في كل فقرة جديدة مسافة بادئة للسطر الأول بمقدار (1سم).
- 6. أن لا تزيد عدد الصفحات البحث بما فيها الأشكال والرسوم والجداول والملاحق على (30) صفحة.
- تعطى صفحات البحث بما فيه صفحات الخرائط والاشكال والملاحق أرقاما متسلسلة في أسفل الصفحة من أول البحث إلى آخره.

- 8. أن تكون للبحث مقدمة واطار منهجي تثار فيه الإشكالية التي يرغب الباحث في تناولها بالدراسة والتحليل، وكذلك يحتوي على أهمية البحث وأهدافه وفروضه وحدوده والمناهج المتبعة في البحث والدراسات السابقة.
 - 9. أن ينتهي البحث بخاتمة تتضمن أهم النتائج والتوصيات.
 - 10. تقسم عناوين البحث كما يلي:
 - العنا وين الرئيسية (أولاً، ثانياً، ثالثاً،.....).
 - **_** العناوين الفرعية المنبثقة عن الرئيسية (1 ، 2 ، 3،).
 - . الاقسام الفرعية المنبثقة عن عنوان فرعى (أ، ب، ج، د.....).
 - . الاقسام الفرعية المنبثقة عن فرع الفرع (أ/1، أ/2، أ3،.....).

.(....،3/ب،2ب،1/ب)

تطبق قواعد الإشارة إلى المراجع والمصادر وفقا لما يأتي: المهوامش:

يستخدم نظام APA، ويقتضي ذلك الإشارة إلى مصدر المعلومة في المتن بين قوسين بلقب المؤلف متبوعا بالتاريخ ورقم الصفحة، مثال: (القزيري، 2007م، ص21). قائمة المراجع:

> يستوجب ترتيبها هجائيا حسب نوعية المراجع كما يلي: الكتب:

يبدأ المرجع بالاسم الأخير للمؤلف، ثم الأسماء الأولى، سنة النشر، ثم عنوان الكتاب بخط غامق (Bold)، ثم دار النشر، مكان النشر، ثم طبعة الكتاب (لا تذكر الطبعة رقم 1 إذا كان للكتاب طبعة واحدة)، كما في الأمثلة الآتية: - القزيري، سعد خليل، (2007)، **دراسات حضرية**، دار النهضة العربية، بيروت. - دخيل، مفتاح علي، سيالة، انور عبدالله، (2001)، **مقدمة علم المساحة**، المكتب الجامعي الحديث، الاسكندرية. - صفى الدين، محمد، وآخرون، (1992)، **الموارد الاقتصادية**، دار النهضة العربية، القاهرة.

الكتب المحررة :

إذا كان المرجع عبارة عن كتاب يضم مجموعة من الابحاث لمؤلفين مختلفين فيكتب الاسم الاحير للمؤلف متبوعاً بالأسماء الأولى، ثم سنة النشر، ثم عنوان الفصل بخط غامق (Bold)، ثم كلمة (في) ثم عنوان الكتاب، ثم اسم محرر الكتاب مع إضافة كلمة تحرير مختصرة (تح) قبله، ثم دار النشر، مكان النشر.

- العزابي، بالقاسم محمد، **الموانئ والنقل البحري**، (1997)، في كتاب الساحل الليبي، (تح) الهادي ابولقمة و سعد القزيري، مركز البحوث والاستشارات جامعة قاريونس، بنغازي. **الدوريات المحلمية والنشرات** :

يذكر الاسم الاخير للمؤلف متبوعاً بالأسماء الأولى، ثم عنوان البحث بخط غامق (Bold)، ثم اسم الدورية والجهة التي تصدرها، ثم مكان النشر، رقم المجلد إن وجد، ثم رقم العدد ثم سنة النشر.

- بالحسن، عادل ابريك، تدهور البيئة النباتية في حوض وادي الخبيري بمضبة الدفنة في ليبيا، مجلة أبحاث، مجلة نصف سنوية تصدر عن كلية الآداب جامعة سرت، سرت، العدد (12)، سبتمبر 2018م.

الرسائل العلمية :

يذكر الاسم الاخير للمؤلف متبوعا بالأسماء الأولى، السنة، ثم عنوان الرسالة بخط غامق (Bold)، ثم يحدد نوع الرسالة (ماجستير/دكتوراه) متبوعة بغير منشورة بين قوسين، ثم القسم والكلية واسم الجامعة والمدينة التي تقع فيها.

- جهان، مصطفى منصور، (2012)، الصناعات الغذائية في منطقة مصراتة، رسالة دكتوراه (غير منشورة)، قسم الجغرافيا، كلية الآداب، جامعة طرابلس، طرابلس.

المصادر والوثائق الحكومية:

إذكان المرجع عبارة عن تقرير أو وثيقة حكومية فيدون الهامش على النحو التالي:-- أمانة اللجنة الشعبية العامة للاقتصاد والتخطيط، (1984)، النتائج النهائية للتعداد العام للسكان في ليبيا سنة 1984م، مصلحة الاحصاء والتعداد، طرابلس.

المحتويات

الصفحت	عنوان البحث
34 - 1	تحليل مورفومتري إحصائي للمتغيرات المورفومترية لأحواض الرتبة الرابعة والخامسة في حوض وادي تامت- ازكير باستخدام نظم المعلومات الجغرافية د. عمر امحمد علي عنيبة
88 - 35	دراسة خصائص ومشكلات التربة في وادي العين بمضبة الدفنة شمال شرق ليبيا. د. عادل ابريك محمد بالحسن د . فتح الله خطاب احميدة أ. عبدالعاطي صالح عبدالعاطي أ. موسي عبد الرواف حماد أ. محمد ابريك محمد بالحسن
110 - 89	التغيرات المناخية وتنامي الضخ العصري لمياه الري بواحات الجنوب الشرقي للمغرب واحة فركلة بحوض غريس نموذجا أ. عبد الصمد خويا أ. عبد الاله عبدلاوي د. مصطفى أعفير
140 - 111	البصمة البيئية للصيد الجائر البحري في السواحل الشمالية الغربية الليبية دراسة في الجغرافيا الحيوية د. فتحية أبوراوي إشتيوي منصور
186 - 141	توثيق مواقع السياحة الاثرية في مدينة تعز القديمة باستخدام نظم المعلومات الجغرافية د. خالد عبد الجليل النحار أ. تماني عباس عقلان
210 - 187	ميناء الزاوية النفطي، دراسة في جغرافية النقل أ. د. حسين مسعود أبومدينة د. آمال جمعة النكب

المحتويات

الصفحت	عنوان البحث
240 - 211	خليج سرت "رابط جغرافي في تاريخ ليبيا الحديث" أ. محمد إبراهيم الهمالي د. حسن المدني علي أكريم
264 - 241	منطقة خليج سرت دراسة جيوبولتيكية أ. حواء أحمد عبد السلام المطردي
286 - 265	التباين المكاني لخصائص السكان المتزوجين بأكثر من زوجة في محافظة المثنى لعام 2021م أ. أحمد حميد رسام البركات
300 - 287	خريطة جيومورفولوجية أساسية للمنطقة الساحلية الممتدة ما بين مدينتي سوسه و كرسه بمنطقة الجبل الأخضر – ليبيا د. عابد محمد طاهر
310 - 301	Accuracy Assessment of The Classified Landsat TM Satellite Imagery Data for Aried and Semiarid Areas Dr. Tarek Elaswed
326 - 311	Mapping of Geological Formations in the Bi'r Zaltan Area Using Remote Sensing Technique Dr. Ali Ibrahim Eliawa

الافتتاحية

الحمد لله رب العالمين، والصلاة والسلام على خاتم الانبياء والمرسلين سيدنا محمد الهادي الأمين، وعلى آله وصحبه ومن تبعه بإحسان إلى يوم الدين،... أما بعد.

يسر هيئة تحرير بحلة ليبيا للدراسات الجغرافية أن يصدر عددها الثالث في موعده المحدد، وهي نتيجة تضافر جهود وتعاون زملائنا أعضاء هيئة التدريس في الجامعات الليبية الذين تفضلوا بتقييم البحوث وتقويمها، باعتباره واجب وطني أولاً قبل أن يكون واجب مهني.

تضمن هذا العدد اثنى عشرة بحثاً في فروع الجغرافيا المختلفة، كالجيمورفولوجيا، والجغرافية الحيوية، وجغرافية السكان، وجغرافية النقل، والجغرافية السياسية، بالإضافة إلى الاستشعار عن بعد ونظم المعلومات الجغرافية. وقد شارك في إعدادها عدد من الجغرافيين من ليبيا والمغرب واليمن والعراق.

وبمذه المناسبة، تتقدم هيئة تحرير المجلة بجزيل الشكر للسادة الباحثين المشاركين في هذا العدد، والسادة أعضاء هيئة التدريس بالجامعات الليبية على وقتهم الثمين الذي خصصوه لتقييم هذه الورقات العلمية ، متمنين منهم مزيداً من العطاء والإنتاج العلمي، وتجدّد أسرة الجلّة دعوتما لكل الباحثين بالالتفاف حول هذا المجلة الناشئة بإسهاماتكم العلمية؛ حتى تضمن بإذن الله استمرار صدورها في موعدها المحدد.

و أخيرا.. نرجو من قرائنا الأعزَّاء، أن يلتمسوا لنا العذر في أي هفوات أو أخطاء غير مقصودة، فالكمال لله وحده، ويسرنا أن نتلقَّى أرائكم، واقتراحاتكم عبر ٱلبريد الالكتروني الخاص بالمجلة، حول هذا العدد؛ بما يسهم في تحسين وتطوير المجلة شكلاً ومضموناً. والله ولي التوفيق

ا.د. حسين مسعود أبومدينة

رئيس التحرير سرت، 14 يوليو 2022م

Accuracy Assessment of The Classified Landsat TM Satellite Imagery Data for Aried and Semiarid Areas

Dr. Tarek Elaswed

Associate professor Department of Geography, Faculty of Arts, University of Zawia *T.elaswed@zu.edu.ly*

Abstract

Depending on the availability of land cover and land use (LCLU) data and their importance in studying the impacting changes in environmental and climatic systems, and as these data provide opportunities to increase scientific research in the environmental field at the landscape level. Reports of accuracy for this data can be high and acceptable, but at the same time they are untrue and misleading. From this point of view, one of the first concerns of the remote sensing community has become to improve the quality of data and the methodology for extracting land cover information and land uses, in addition to the advantages provided by satellite methodologies, there are limitations that must be realistically measured to be made clear to users of this data so that they can make correct decisions about it and the possibility of its use. Accuracy assessment of these products is the procedure used to measure the quality of these products. Using remote sensing techniques to detect the changes during the period 1988 till 2000 using Landsat TM5 dates (1988, 1992, 1996, and 2000). Also using the different kind of maps which integrated with the remote sensing data to find the relationship between the changes in the land cover in the study area, west of Tripoli at Lon (12: 33:18 -13:21:47) and Lat (32:55:10 - 32:35:44). Supervisor classification carried out using Maximum likelihood method chosen to classify the images. High resolution data such as Quick Bird (2002) and Spot 5 (2000) have been used as reference to choose the training sets and to apply the accuracy assessment for the classification results. The accuracy assessment has been applied was between 67% and 76%, obtained by using the high-resolution data as reference.

Keywords: Land use; Land cover; Maximum likelihood; Accuracy assessment; classification

تقييم دقم بيانات صور الأقمار الصناعيم المصنفم من لاندسات TM للمناطق الجافم وشبه الجافم

د. طارق المختار الاسود استاذ مشارك بقسم الجغرافيا/كلية الآداب/ جامعة الزاوية T.elaswed@zu.edu.ly

الملخص

تبعاً لتوفر بيانات الغطاء الأرضى واستعمالات الاراضي (LCLU) وأهميتها في دراسة التغيرات المؤثرة في النظم البيئية والمناخية، وحيث أن هذه البيانات توفر فرص لزيادة البحث العلمي في الجحال البيئي على مستوى المناظر الطبيعية. تقارير الدقة بالنسبة لهذه البيانات يمكن ان تكون عالية ومقبولة ولكنها في نفس الوقت تكون غير حقيقية ومضللة. ومن هذا المنطلق اصبح من أولى اهتمامات مجتمع الاستشعار عن بعد هي تحسين جودة البيانات ومنهجية استخلاص معلومات الغطاء الارضى واستعمالات الاراضي، بالإضافة إلى المزايا التي توفرها منهجيات الاقمار الاصطناعية فهناك قيود يجب قياسها بشكل واقعى لتوضيحها للمستخدمين لهذه البيانات حتى يتمكنوا من اتخاذ قرارات صحيحة بشأنها وامكانية استخدامها. وتقييم الدقة لهذه المنتجات هو الإجراء المستخدم لقياس جودة هذه المنتجات. استخدام تقنيات الاستشعار عن بعد لكشف التغيرات خلال الفترة من 1988 حتى 2000 باستخدام مرئيات القمر الاصطناعي لاندسات TM5 للسنوات (1988 و 1992 و 1996 و 2000). أيضا باستخدام أنواع من الخرائط المختلفة بالتكامل مع بيانات الاستشعار عن بعد لإيجاد العلاقة بين التغيرات في الغطاء الأرضى في منطقة الدراسة الواقعة بين خطى طول ودائرتي عرض and Lat (12: 33:18 - 13:21:47) Lon (12: 33:18 - 13:21:47) (32:55:10 - 32:35:44). تم احتيار تقنية التصنيف الموجه باستخدام طريقة احتمالية القصوي المحتارة (Maximum likelihood) (ML) لتصنيف المرئيات. مرئيات عالية الدقة مثل Quick Bird (2002) و 2005) و 2000) استخدمت كمرجع لاختيار مجموعات التدريب ولتطبيق تقييم واختبار الدقة لنتائج التصنيف. تم تطبيق تقييم الدقة والحصول على نتيجة ما بين 67 % و 76 % والتي تم الحصول عليها باستخدام البيانات عالية الدقة كمرجع. الكلمات المفتاحية: استخدامات الأراضي، الغطاء الأرضي، احتمالية قصوى، تقييم الدقة، تصنيف.

1. Introduction

When using satellite images and classifying them to produce maps of Landcover and Landuse (LCLU) by conducting supervised classification, collecting a set of different classes and training samples is used to establish classification rules and multiclass boundaries in the feature space. The training sample data used in the Maximum Likelihood (ML) also provide extra information such as the shape of the distribution of the members of each class as well as the location of the center of each cluster; therefore, the resulting classification might be expected to yield a more accurate result than those produced by the other statistical supervised classifiers (Mather, 2004).

The ML algorithm considers the relative likelihood of overlapping pixels using the training data as a means of estimating class variances and also using the variability of brightness of each class to maximize the probability of correct classification (Campbell, 2006). The algorithm was used to identify LCLU changes, especially in vegetation cover (agriculture activities), classifying Landsat TM5 data of the study area during the period from 1988 to 2000, using four images acquired in 1988, 1992, 1996 and 2000. Nine different classes were collected from each image represented in class1: Other trees (OT) (Olive, Palm, Almonds), class2: Citrus fruits (CF) (Orange and Lemon), class3: Annual Crops (AC) (Cereal, alfalfa, market-gardening, etc), class4: Urban areas (UA), class5: Pasture land with natural vegetation (PLNV), class6: Sand dunes, sand covered areas and drifted sand (SD), class7: Forest, reforestation (F), class8: Sea (S) and class9: Bare rocks (BR). High spatial resolution data (Quick Bird 2002, Spot5 2000) and Spot XS 1987) and existing land use map were used to choose the samples to classify the images, and were also used to assess the accuracy of the classification.

Although accuracy assessment is a vital component in any study involving LCLU classification, which is being used increasingly to produce thematic land cover maps (Foody, 2002 and Boschetti *et al.*, 2004). Since spectral similarity of some classes and the complexity of bounders between them in the classification process might be one of the sources of the error and that the basic challenge of the accuracy assessment (Powell *et al.*, 2004). Maps provided from remote sensing are often judged with reference data and found to be of insufficient quality for operational applications (Foody, 2002 and Latifovic *et al.*, 2004). Accuracy is usually based on an evaluation of the classified images with a reference data set and the dissimilarities between the two data sets are typically interpreted as errors in the derived land cover map (Stehman, 1997a and Foody, 2002).

For assessment of classification accuracies different classification accuracy of the reference samples are then summarized in a confusion matrix and performance of the LCLU classification. Analysing the critical assumption of the classification accuracy that the confusion matrix essentially representative of the classification results of the entire study area (Cheng *et al.*, 2019). All accuracies or errors are characteristically associated with uncertainties due to variability or uncertainty in selection of training and reference samples (Weber and Langille, 2007).

2. Classification Accuracy Assessment

A Stratified Random Sampling technique was applied in order to produce the accuracy of the classified images. Many remote sensing analysts prefer this method (Jensen, 2005), in which a minimum number of samples are selected from each class after the thematic map has been prepared. Stratified random sampling involves two steps. First, the study area is classified into land cover classes on what is found in the remote sensing classification. Sample locations are then randomly distributed throughout an existing land use map (CEDEX, Land use map 1981), and a highresolution images Quick Bird (2002) and Spot 5 (2000). Points were randomly created using the Accuracy Assessment Package in ERDAS to all classified images, only selected confidence points were used in the statistic accuracy analysis (Kappa Analysis). These points have been indicated by applying two rules:

• Selected classes – only points for selected classes were chosen,

• Confidence point – the point should belong clearly to one class.

In the assessment of the accuracy, to produce the report for the classified images, it needs to be compared with an existing land use map, and the high-resolution images that was considered a clear to discover the features, on the other hand the doublecheck during the field work was followed. When the images had been classified, ground survey was done to ensure that the classes, which were mapped effectively, correspond to the thematic classes they were supposed to be.

To produce accuracy statistic of classified images in this study, Error Matrices Analysis and Kappa Analysis (K_{hat}) were applied to define overall accuracy and a K_{hat} value. Short explanations of these methods are shown below:

The most common and typical method used by researchers to assess classification accuracy is with the use of an error matrix (Congalton, 1991). An error matrix is a square assortment of numbers defined in rows and columns that represent the number of sample units (i.e., pixels, clusters of pixels, or polygons) assigned to a particular category relative to the actual category as confirmed on the ground. The rows in the matrix represent the remote sensing derived land use map (i.e., Landsat data), while the columns represent the reference data (i.e., aerial photo) (Jensen, 1996). The error matrix was applied to produce overall accuracy for the classified images this study. The overall accuracy of the classification map is determined by dividing the total number of correct pixels (sum of the major diagonal) by the number of pixels in the error matrix (N).

These tables produce many statistical measures of thematic accuracy including overall classification accuracy (the sum of the diagonal elements divided by the total number), KAPPA analysis yields a K_{hat} statistic (an estimate of KAPPA) that is a measure of agreement or accuracy between the remote sensing-derived classification map. The K_{hat} statistic is computed as below:

$$K_{hat} = \frac{N\Sigma x_{ii} - \Sigma x_{class} x_{ref}}{N^2 - \Sigma x_{class} x_{ref}}$$

 $\begin{array}{ll} \text{Where,} & \text{N} &= \text{is the total number of observations} \\ & X_{ii} = \text{are the observations along the diagonal} \\ & X_{class} = \text{are the observations for classified data} \\ & X_{ref} = \text{are the observations for reference data} \end{array}$

As the results of the classification which locate the change on the land cover. Samples (pixels) for each image were selected randomly for comparison with the same samples in the reference data. Firstly, to assess the classified image of the 2000 Landsat TM5, the samples were evaluated with the same points in a Spot 5 image from 2000 and Quick Bird image from 2002. The confusion matrix Table (1), illustrate the overlap between the classes.

	ОТ	CF	AC	U	PLNV	SD	F	S	BR	Users Accuracy (%)
OT	126	1	59	2	31	7	0	0	0	56
CF	13	121	39	0	4	0	3	0	0	67
AC	37	8	149	1	4	5	1	0	0	73
U	0	0	0	19	3	1	0	0	0	83
PLNV	13	0	27	1	163	1	0	0	0	80
SD	0	0	0	0	1	20	0	0	0	95
F	0	1	1	0	0	0	12	0	0	86
S	0	0	0	0	0	0	0	22	0	100
BR	0	0	0	0	3	2	0	0	16	76
Producers Accuracy %	67	92	54	83	78	56	75	100	100	

Table (1). Confusion matrix of the classification accuracy of 2000

Secondly, 1996 Landsat TM5 image classification was compared with the Spot 5 image from 2000 Table (2), shows the confusion matrix of the accuracy assessment.

Table (2). Confusion matrix of the classification accuracy of 1996

Accura	Accuracy Assessment of The Classified Landsat TM Satellite									
	Imagery Data for Aried and Semiarid Areas									
	ОТ	CF	AC	U	PLNV	SD	F	s	BR	Users Accuracy (%)
OT	184	8	76	1	11	0	4	0	0	65
CF	24	176	44	0	0	0	3	0	0	71
AC	1	1	56	0	1	0	0	0	0	95
U	0	0	0	13	0	0	0	0	0	100
PLNV	13	1	9	0	174	1	2	0	0	87
SD	0	0	0	0	0	11	0	0	0	100
F	0	0	0	0	0	0	8	0	0	100
S	0	0	0	0	0	0	0	14	1	93
BR	0	0	0	0	0	0	0	0	9	100
Producers Accuracy %	83	95	30	93	94	92	47	100	90	

Thirdly, because there is no high spatial resolution data as valid to assess 1992 Landsat TM5 image classification. Therefore 1996 classified image was compared with the classified 1996 Landsat TM5 image and the 2000 Spot 5 image to test the accuracy the confusion matrix as shown in Table (3).

Table (3). Confusion matrix of the classification accuracy of 1992

· · · · · · · · · · · · · · · · · · ·									-	9
	ОТ	CF	AC	U	PLNV	SD	F	S	BR	Users Accuracy (%)
OT	155	7	80	0	9	0	5	0	0	61
CF	38	130	61	0	4	0	5	0	0	55
AC	0	1	65	0	0	0	0	0	0	98
U	0	0	0	17	1	3	0	0	0	81
PLNV	15	0	4	1	155	0	2	0	0	87
SD	1	0	0	1	0	47	0	0	0	96
F	1	0	0	0	1	0	6	0	0	75
S	0	0	0	0	0	0	0	26	0	100
BR	0	0	0	1	0	3	0	0	6	60
Producers Accuracy%	74	94	31	85	91	89	33	100	100	

Finally, for the same reason of the absence of data as reference to test the accuracy of the result of the classification image of 1988, hence 1987 Spot XS image, with a spatial resolution of 20 m and assisted by Spot 5 image of 2000 to assess the accuracy of the classified 1988 Landsat TM5 and the confusion matrix was as shown in Table (4). Clearly it would have been preferable to have had independent land cover data for each date with which to assess the accuracy of the classified images but such information was not available and the above comparisons deemed the closest evaluations (in terms of timeliness of data acquisition) on this accession.

	OT	CF	AC	U	PLNV	SD	F	s	BR	Users Accuracy(%)
OT	198	8	134	4	15	2	7	0	0	54
CF	22	153	57	1	0	0	3	0	0	65
AC	0	0	61	0	0	0	1	0	0	98
U	0	0	1	12	0	0	0	1	0	86
PLNV	16	2	12	1	147	1	1	0	0	82
SD	0	0	0	0	0	10	0	0	0	100
F	1	0	0	0	0	0	2	0	0	67
S	0	0	0	0	0	0	0	18	0	100
BR	0	0	0	6	0	3	0	2	13	54
Producers Accuracy%	84	94	23	50	91	63	14	86	100	

Table (4). Confusion matrix of the classification accuracy of 1988

3. Results and Analysis

As shown in previous section, the error matrix of the accuracy assessments of classified satellite images, the most confusion between the interesting vegetation classes (OT, CF, AC and PLNV). The spectral similarity of the classes is one of the most causes when the training samples were selected. On the other hand, the spaces between the lines of trees which sometimes more than 20 meter are using to grow the annual crops or natural vegetation might be grow naturally as other reasons to make the confusing of the classes. The number of the test points between the classified image and the reference data and the availability of the valid data as a reference to test the classified image, might be one of the factors which affect the percentage of the accuracy assessment results. Table (5) illustrate the overall accuracy and Kappa statistic of the classification, as shown the overall accuracy of image 2000 and 1996 were higher than image 1988 because the high spatial resolution (reference) was captured in 2000 and 2002 and that make it easy to test the classification.

Land cove classes	1988	1992	1996	2000
Overall accuracy	67.03%	71.24%	76.24%	70.67%
Kappa statistic	0.5848	0.6470	0.6952	0 .6335

Table (5). Summary of Landsat classification accuracy (%)for 1988, 1992, 1996 and 2000

Overall accuracy for each classified image is comparatively good with all of them indicating more than 67%. The highest accuracy map was 76.24%, for year 1996 and the lowest was 67.03% for 1988. K_{hat} statistic for all maps given values from 0.5848 to 0.6952, meaning moderate agreement between all classified images produced in this study compared with ground survey data.

4. Conclusion

The results demonstrate that ML supervised classification of Landsat TM-5 imagery can be used to produce accurate maps and statistics referring to land cover change. On the other hand, data with high spatial resolution such as Quick Bird and Spot 5 were useful to select samples to classify to classify Landsat TM-5 imagery and to assess the accuracy of the classification results. The confusion matrix is the simplest descriptive statistic used to compare a classification result with ground truth information. "...This accuracy measure indicates the probability of a reference pixel being correctly classified and is really a measure of omission error. It is difficult to have complete confidence in the accuracy measures for the earlier images as the reference data are not contemporary. Also, the accuracies are probably related to issues of training data selection, since it was more difficult to distinguish and select pure training areas in the earlier images because of a lack of independent reference data for training set selection. However, in general the resulting accuracy appears consistent with other studies that have attempted to classify land cover in semiarid areas and so deemed acceptable for further analysis. The results suggest that ML can be used to map land cover in this study, but errors persist and overall accuracies are not necessarily as high as they could be, e.g., Kappa accuracies described as 'good' rather than 'excellent'. Hence there is a need to investigate an alternative image classification method to either improve or at least validate the patterns in land cover observed. The accuracy of the classification depends on many issues; (i) Data availability; (ii) Quality of the data to be classified; (iii) The validity of the data used as reference and the gap in time between the classified images and the validation data; (iv) The similarity of some land cover classes making them difficult to separate. Whilst the accuracy of the classification was generally between 67% and 76%, this was based upon a pragmatic rather than an ideal approach to accuracy assessment, relying on only a limited set of available validation data. In addition, the ML algorithm is also prone to a number of influences that can affect the accuracy of the outputs, e.g., mixed pixel and atmospheric effects (Foody, 2002).

5. References

- Boschetti, L., Flasse, S. P., & Brivio, P. A. (2004). Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: *The Pareto Boundary. Remote Sensing of Environment*, 91, 280–292.
- Campbell, J. B., 2006. Introduction to remote sensing, 4rd Ed. London: Taylor and Francis, New York.
- Cheng, K. S., Ling, J.Y., Lin, T. W., Liu, Y. T., Shen, Y. C., Kono, Y. A new thinking of LULC classification accuracy assessment. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, Volume XLII-2/W13, 2019.
- Congalton, R. G. (1991); A Review of Accessing the Accuracy of Classifications of Remotely Sensed Data. *Remote Sensing of Environment*, 37:35-46.
- Foody, M. (2002). Status of land cover classification accuracy assessment. *Remote Sensing of Environment*, 80, 185-201.
- Latifovic, R. Olthof., I. (2004). Accuracy assessment using sub-pixel fractional error matrices derived from satellite data *Remote Sensing of Environment*, 90, 153-165.
- Mather, M. (2004), *Computer processing of remotely-sensed images*, Wiley, Chichester. 3rd Edition.
- Stehman, S. V. (1997a). Selecting and interpreting measures of thematic classification accuracy. *Remote Sensing of Environment*, 62, 77-89.
- Powell, L. R., Matzke, N., de Souza Jr, C., Clark, M., Numata, I., Hess, L. L., Roberts, A. D. (2004). Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. *Remote sensing of environment*, 90, 221-234.
- Weber, K.T., Langille, J., 2007. Improving classification accuracy assessments with statistical bootstrap resampling techniques. *GIScience & Remote Sensing*, 44, pp. 237–250.